- (5) Kudchadker, A. P.; Kudchadker, S. A.; Wilholt, R. C. Tetrahydrofuran: Key Chemicals Data Books; Thermodynamic Research Center, Texas
- A&M University: College Station, TX, 1978.
  (6) Abdullah, M. O.; Al-Madafi, S. H. F.; Awaad, A. M. J. Chem. Eng. Data 1987, 32, 161.
- Werblan, L.; Lesinski, J. Pol. J. Chem. 1980, 54, 507.
   Haar, L.; Gallagher, J. S.; Kell, G. S. NBS / NRC Steam Tables; Hemisphere: Washington, DC, 1984.
- Butyrolactone; General Aniline & Film Corp.: New York, 1964.
   Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids; McGraw-Hill: New York, 1977.
- (11) Vetere, A. Chem. Eng. J. 1987, 35, 215.

- Venkateswarlu, P.; Choudary, N. V.; Krishnlah, A.; Raman, G. K. *Phys. Chem. Liq.* **1986**, *15*, 203.
   Gurevich, I. G.; Gisina, K. B.; Shchitnikov, V. K.; Dubasova, V. S.;
- Nikonov, V. L. J. Eng. Phys. 1982, 42, 304. (14) Kiyohara, O.; Benson, G. C. Can. J. Chem. 1977, 55, 1354
- (15) Klyohara, O.; D'Arcy, P. J.; Benson, G. C. Can. J. Chem. 1979, 57,
- 1006.

Received for review July 17, 1988. Accepted May 30, 1989. We thank Hindustan Lever Research Foundation, Bombay, India, for supporting this work.

# Mixture Properties of the Water + $\gamma$ -Butyrolactone + Tetrahydrofuran System. 2. Viscosities and Surface Tensions of $\gamma$ -Butyrolactone + Water at 303.15–343.15 K and $\gamma$ -Butyrolactone + Tetrahydrofuran at 278.15-298.15 K

## Devarapalli H. S. Ramkumar and Arvind P. Kudchadker\*

Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Bombay 400 076, India

Viscosity and surface tension measurements of (x) water +  $(1 - x)\gamma$ -butyrolactone (GBL) and (x)tetrahydrofuran + (1 – x)GBL were measured over temperature ranges of 303.15-343.15 and 278.15-298.15 K, respectively. Data are correlated to models for interpolation and limited extrapolation.

#### Introduction

In part 1 of this series (1) density and sound velocity measurements have been reported for water +  $\gamma$ -butyrolactone (GBL) and tetrahydrofuran (THF) + GBL systems. Viscosities of THF + water are available in the literature (2). In the present investigation viscosity and surface tension measurements are presented for the above systems.

#### **Experimental Section**

The method of purification and the purity of samples are reported in part I (1). Viscosities were measured with a Ubbelonde viscometer. Efflux times were measured up to  $\pm 0.1$ s. Triple-distilled water and carefully purified toluene were used as calibrating fluids to determine the viscometer constant. Viscosities of pure THF and GBL at 298.15 K are reported in Table I. The uncertainty in our viscosity measurement is estimated to be  $\pm 0.001 \times 10^{-3} \text{ N} \cdot \text{s} \cdot \text{m}^{-2}$ .

Table I. Viscosity of Pure Components GBL, THF, and H<sub>2</sub>O at 298.15 K

| compd | $\mu/\mathrm{N}\cdot\mathrm{s}\cdot\mathrm{m}^{-2}	imes10^{3}$ | $\mu(\text{lit.})/\text{N}\cdot\text{s}\cdot\text{m}^{-2} \times 10^3$ |  |
|-------|----------------------------------------------------------------|------------------------------------------------------------------------|--|
| GBL   | 1.738                                                          | 1.7315; <sup>b</sup> 1.575 <sup>c</sup>                                |  |
| THF   | 0.454                                                          | 0.455; <sup>d</sup> 0.470 <sup>c</sup>                                 |  |
| H₂O⁰  | 0.7967                                                         | 0.798 <sup>e</sup>                                                     |  |

<sup>a</sup>At 303.15 K. <sup>b</sup>Reference 3. <sup>c</sup>Reference 9. <sup>d</sup>Reference 4. <sup>e</sup>Reference 5.

Table II. Surface Tension Data of Some Pure Components

| compd            | T/K    | $\sigma/\mathrm{N}\cdot\mathrm{m}^{-1}	imes10^3$ | $\sigma(\text{lit.})^a/\text{N}\cdot\text{m}^{-1} \times 10^3$ |
|------------------|--------|--------------------------------------------------|----------------------------------------------------------------|
| ethanol          | 303.15 | 21.55                                            | 21.48                                                          |
| <i>n</i> -octane | 318.15 | 19.12                                            | 19.24                                                          |
|                  | 328.15 | 18.23                                            | 18.29                                                          |
|                  | 338.15 | 17.26                                            | 17.33                                                          |
| H₂O              | 303.15 | 71.19                                            | 71.40                                                          |
| -                | 343.15 | 64.23                                            | 65.49                                                          |
| THF              | 298.15 | 26.59                                            | 26.40 <sup>b</sup>                                             |

<sup>a</sup>Reference 6. <sup>b</sup>Reference 4.

Table III. Viscosity of  $(x)H_2O + (1 - x)GBL$ 

|        | $\mu/\mathrm{N}\cdot\mathrm{s}\cdot\mathrm{m}^{-2}	imes10^{3}$ |          |          |          |          |  |  |
|--------|----------------------------------------------------------------|----------|----------|----------|----------|--|--|
| x      | 303.15 K                                                       | 313.15 K | 323.15 K | 333.15 K | 343.15 K |  |  |
| 0.0000 | 1.6097                                                         | 1.3901   | 1.2131   | 1.0766   | 0.9513   |  |  |
| 0.0898 | 1.5598                                                         | 1.3391   | 1.1635   | 1.0389   | 0.9055   |  |  |
| 0.2337 | 1.5946                                                         | 1.3492   | 1.1594   | 1.0129   | 0.8893   |  |  |
| 0.6207 | 1.6736                                                         | 1.3485   | 1.1116   | 0.9330   | 0.7994   |  |  |
| 0.9031 | 1.2572                                                         | 1.0049   | 0.8246   | 0.6901   | 0.5875   |  |  |
| 1.0000 | 0.7967                                                         | 0.6522   | 0.5470   | 0.4689   | 0.4097   |  |  |

## Table IV. Viscosity of (x)THF + (1 - x)GBL

|        | $\mu/\mathrm{N}\cdot\mathrm{s}\cdot\mathrm{m}^{-2}	imes10^3$ |                    |                    |                            |                    |  |  |
|--------|--------------------------------------------------------------|--------------------|--------------------|----------------------------|--------------------|--|--|
| x      | 278.15 K                                                     | 283.15 K           | 288.15 K           | 293.15 K                   | 298.15 K           |  |  |
| 0.0000 | 2.546ª                                                       | 2.285ª             | 2.072ª             | 1.892ª                     | 1.738              |  |  |
| 0.1077 | 2.070                                                        | 1.877              | 1.717              | 1.583                      | 1.462              |  |  |
| 0.286  | 1.545 <sup>b</sup>                                           | 1.418 <sup>b</sup> | 1.298 <sup>b</sup> | 1.210                      | 1.124 <sup>b</sup> |  |  |
|        | 1.462°                                                       | 1.365°             | 1.278°             | 1.198°                     | 1.127°             |  |  |
| 0.3124 | 1.494                                                        | 1.367              | 1.261              | 1.172                      | 1.089              |  |  |
| 0.483  | 1.182 <sup>b</sup>                                           | 1.105 <sup>b</sup> | 1.020              | 0. <b>955</b> <sup>b</sup> | 0.890              |  |  |
|        | 1.030°                                                       | 0.967°             | 0.910°             | 0.858°                     | 0.810°             |  |  |
| 0.7010 | 0.827                                                        | 0.772              | 0.724              | 0.682                      | 0.641              |  |  |
| 0.8954 | 0.639                                                        | 0.602              | 0.569              | 0.539                      | 0.510              |  |  |
| 1.0000 | 0.564                                                        | 0.534              | 0.506              | 0.480                      | 0.454              |  |  |

<sup>a</sup>Extrapolated values using eq 1, coefficients of which are given in Table V. <sup>b</sup>Interpolated from our experimental data. <sup>c</sup>Reference

Table V. Coefficients of Eq 1 for GBL, THF, and H<sub>2</sub>O

| compd | ln A    | α        | β        | $T_0/K$                                                    | sa    | range/K       |
|-------|---------|----------|----------|------------------------------------------------------------|-------|---------------|
| GBL   | 17.9634 | -3.1254  | 27.2464  | $\begin{array}{r} 229.62 \\ -164.64 \\ 273.15 \end{array}$ | 0.022 | 298.15-343.15 |
| THF   | 89.4202 | -14.9602 | 664.0694 |                                                            | 0.020 | 278.15-298.15 |
| H₂O   | 22.4872 | -4.0267  | 8.8893   |                                                            | 0.002 | 298.15-343.15 |

<sup>a</sup>s =  $\left[\sum (\exp t - \operatorname{calc})^2/(n-1)\right]^{1/2}$ ; n = number of data points.

Table VI. Coefficients of Eq 3 for  $(x)H_2O + (1 - x)GBL$ 

|        |                       |                       | second |                       |        |  |
|--------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------|--|
| T/K    | <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | $a_2$                                                                                                           | <i>a</i> <sub>3</sub> | sa     |  |
| 303.15 | 1.5347                | -1.5980               | 1.3707                                                                                                          | -1.3737               | 0.0001 |  |
| 313.15 | 1.4257                | -1.4402               | 1.2720                                                                                                          | -1.3147               | 0.0001 |  |
| 323.15 | 1.3305                | -1.2893               | 1.1840                                                                                                          | -1.2769               | 0.0001 |  |
| 333.15 | 1.2253                | -1.1462               | 1.0987                                                                                                          | -1.2062               | 0.0001 |  |
| 343.15 | 1.1715                | -0.9965               | 0.9160                                                                                                          | -1.1750               | 0.0001 |  |

 $^{a}s = [\sum (expt - calc)^{2}/(n - 1)]^{1/2}; n =$  number of data points.

Table VII. Coefficients of Eq 3 for (x)THF + (1 - x)GBL

| T/K    | $a_0$   | <i>a</i> <sub>1</sub> | $a_2$   | $a_3$   | sa                    |  |
|--------|---------|-----------------------|---------|---------|-----------------------|--|
| 278.15 | -0.2746 | 0.0748                | -0.2159 | -0.2396 | $0.52 \times 10^{-7}$ |  |
| 283.15 | -0.2672 | 0.0783                | -0.1918 | -0.2129 | $0.54 \times 10^{-7}$ |  |
| 288.15 | -0.2584 | 0.0739                | -0.1473 | -0.1749 | $0.67 \times 10^{-7}$ |  |
| 293.15 | -0.2446 | 0.0814                | -0.1002 | -0.1571 | $0.46 \times 10^{-7}$ |  |
| 298.15 | -0.2367 | 0.0828                | -0.0647 | -0.1727 | $0.34 \times 10^{-7}$ |  |
|        |         |                       |         |         |                       |  |

 $^{a}s = [\sum (expt - calc)^{2}/(n - 1)]^{1/2}; n = number of data points.$ 

Surface tensions were measured according to the capillary rise method. The diameter of the capillary was determined by use of a mercury thread with traveling microscope. Surface tensions of some selected pure components are given in Table II for comparison. Our surface tension data are accurate to  $\pm 1.4 \times 10^{-3} \text{ N} \cdot \text{m}^{-1}$ .

#### Results

Viscosities of (x)water + (1 - x)GBL and (x)THF + (1 - x)GBL are given in Tables III and IV along with values of pure components. Pure component viscosity data are correlated with temperature by using eq 1:

$$\ln \mu / (N \cdot s \cdot m^{-2} \times 10^3) = \ln A + \alpha \ln T + \beta / (T - T_0)$$
 (1)

where  $T_0$  is the freezing point of the pure component. Coefficients of eq 1 are given in Table V. Values of the excess of logarithmic viscosity, which represents the free energy of activation, for flow have been calculated by using eq 2 and are shown in Figures 1 and 2. (In  $\mu$ )<sup>E</sup> readily gives the parameter *G* in the Grunberg–Nissan equation (7, 8). Figure 1 also shows the literature data (3) for H<sub>2</sub>O + GBL system. Coefficients of

$$(\ln \mu)^{E} = \ln \mu - (x \ln \mu_{1} + (1 - x) \ln \mu_{2})$$
(2)

$$(\ln \mu)^{\mathsf{E}} = x(1-x)\sum a_{i}(1-2x)^{i}$$
(3)

## Table VIII. Coefficients of Eq 4



**Figure 1**. Dependence of excess logarithmic viscosity on mole fraction for  $(x)H_2O + (1 - x)GBL$ . ---, ref 3 at 298.15 K. —, eq 4. Experimental:  $\nabla$ , 303.15 K;  $\Box$ , 313.15 K; O, 323.15 K;  $\times$ , 333.15 K;  $\Delta$ , 343.15 K.

eq 3 are given in Tables VI and VII. The regression coefficients so obtained were correlated with temperature:

$$A_{k} = C_{0} + C_{1}(T/K) + C_{2}(T/K)^{2}$$
(4)

and the constants of eq 4 are listed in Table VIII for both systems.

Our values of viscosity of the THF + GBL system are compared in Table IV with those reported by Gurevich et al. (9) at two concentrations. The agreement at 298.15 K is better than at lower temperatures. Pure component viscosities for GBL and THF reported by Gurevich et al. (9) differ considerably from the literature values, especially for GBL as reported in Table I.

|                  | $C_0$    | $C_1$   | $C_2$                  | sª     | range/K         |  |
|------------------|----------|---------|------------------------|--------|-----------------|--|
|                  |          | (x)H    | $I_2O + (1 - x)GBL$    |        |                 |  |
| $A_0$            | 11.5875  | -0.0542 | $6.96 \times 10^{-5}$  | 0.0078 | 303.15 - 343.15 |  |
| $A_1$            | -7.7268  | 0.0249  | $-1.53 \times 10^{-5}$ | 0.0023 | 303.15-343.15   |  |
| $\overline{A_2}$ | -7.3704  | 0.0638  | $-1.15 \times 10^{-4}$ | 0.0180 | 303.15-343.15   |  |
| $A_3$            | -4.5561  | 0.0153  | $-1.58 	imes 10^{-5}$  | 0.0081 | 303.15 - 343.15 |  |
|                  |          | T(x)    | HF + (1 - x)GBL        |        |                 |  |
| $A_0$            | 0.1220   | -0.0046 | $1.14 \times 10^{-5}$  | 0.0015 | 278.15 - 298.15 |  |
| $A_1$            | 1.0640   | -0.0072 | $1.32 \times 10^{-5}$  | 0.0023 | 278.15 - 298.15 |  |
| $A_2$            | 1.6480   | -0.0203 | $4.90 \times 10^{-5}$  | 0.0052 | 278.15 - 298.15 |  |
| $A_3$            | -15.6493 | 0.1036  | $-1.73 \times 10^{-4}$ | 0.0093 | 278.15 - 298.15 |  |

<sup>a</sup>s =  $\left[\sum (\exp t - \operatorname{calc})^2/(n-1)\right]^{1/2}$ ; n = number of data points.



Figure 2. Dependence of excess logarithmic viscosity on mole fraction for (x)THF + (1 - x)GBL. ---, eq 4. Experimental: ∇, 278.15 K; □, 283.15 K; X, 288.15 K; A, 293.15 K; O, 298.15 K.

Table IX. Surface Tension of  $(x)H_2O + (1 - x)GBL$ 

|        | $\sigma/\mathrm{N}\cdot\mathrm{m}^{-1}\times10^{3}$ |          |          |          |          |  |  |
|--------|-----------------------------------------------------|----------|----------|----------|----------|--|--|
| x      | 303.15 K                                            | 313.15 K | 323.15 K | 333.15 K | 343.15 K |  |  |
| 0.0000 | 42.69                                               | 41.88    | 40.38    | 39.65    | 37.94    |  |  |
| 0.0898 |                                                     |          | 40.67    | 40.34    | 38.66    |  |  |
| 0.1155 | 43.18                                               | 42.37    | 41.03    | 40.41    | 38.80    |  |  |
| 0.2337 | 42.95                                               | 42.66    | 41.45    | 41.00    | 39.53    |  |  |
| 0.6207 | 44.84                                               | 44.06    | 43.12    | 42.68    | 41.58    |  |  |
| 0.9071 | 52.04                                               | 50.86    | 49.70    | 49.10    | 47.46    |  |  |
| 1.0000 | 71.19                                               | 69.15    | 67.19    | 66.16    | 64.23    |  |  |

Surface tensions of (x)water + (1 - x)GBL and (x)THF + (1 - x)GBL and (x) - x)GBL are given in Tables IX and X. Pure component surface tensions for GBL, THF, and water given in Tables IX and X are correlated with temperature by using the relation

$$\sigma / (N \cdot m^{-1} \times 10^3) = a - bT(K)$$
 (5)

Coefficients of eq 5 are given in Table XI.

Table X. Surface Tension of (x)THF + (1 - x)GBL

|         |          | σ/N·m    | $^{-1} \times 10^{3}$ |          |
|---------|----------|----------|-----------------------|----------|
| x       | 278.15 K | 283.15 K | 293.15 K              | 298.15 K |
| 0.0000ª | 45.79    | 45.21    | 44.03                 | 43.44    |
| 0.3124  | 37.28    | 36.80    | 35.94                 | 35.19    |
| 0.7010  | 32.08    | 31.14    | 30.31                 | 29.25    |
| 0.8954  | 30.25    | 29.12    | 28.07                 | 27.25    |
| 1.0000  | 29.50    | 28.51    | 27.37                 | 26.59    |

<sup>a</sup>Extrapolated values from eq 5, coefficients of which are given in Table XI.

Table XI. Coefficients of Eq 5

| compd | a      | ь      | sª   | range/K |  |
|-------|--------|--------|------|---------|--|
| GBL   | 78.45  | 0.1174 | 0.24 | 303-343 |  |
| THF   | 68.04  | 0.1392 | 0.18 | 278-298 |  |
| H₂O   | 122.23 | 0.1691 | 0.27 | 303-343 |  |

 $as = [\sum (expt - calc)^2/(n-1)]^{1/2}$ ; n = number of data points.

Registry No. GBL, 96-48-0; THF, 109-99-9; H<sub>2</sub>O, 7732-18-5.

## **Literature Cited**

- (1) Ramkumar, D. H. S.; Kudchadker, A. P. J. Chem. Eng. Data, in this issue
- Landauer, O.; Mateescu, G.; Iulian, O.; Gosteanu, G. Rev. Roum. (2) Chim. 1982, 27, 603.
- Chim. 1982, 27, 603.
  (3) Werblan, L.; Lesinski, J. Pol. J. Chem. 1980, 54, 507.
  (4) Kudchadker, A. P.; Kudchadker, S. A.; Wilhoit, R. C. Tetrahydrofuran: Key Chemicals Data Books; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1978.
  (5) Haar, L.; Gallagher, J. S.; Kell, G. S. NBS / NRC Steam Tables; Hemi-sphere: Washington, DC, 1984.
  (6) Jasper, J. J. J. Phys. Chem. Ref. Data 1972, 1, 841.
  (7) Grunberg, L.; Nissan, A. H. Nature 1949, 164, 799.
  (8) Irving, J. B. Viscosity of Binary Liquid Mixtures: The Effectiveness of Mixture Equations; NEL Report No. 631; National Engineering Labora-tory: East Kilbride, Glasgow, 1977.

- tory: East Kilbride, Glasgow, 1977.
- (9) Gurevich, I. G.; Gisina, K. B.; Shchitnikov, V. K.; Dubasova, V. S.; Nikonov, V. L. J. Eng. Phys. 1982, 42, 304.

Received for review July 13, 1988. Accepted May 30, 1989. We thank Hindustan Lever Research Foundation, Bombay, India, for supporting this project.